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ABSTRACT
Medical imaging has always been constrained due to the chal-
lenges in the acquisition process, high costs, low signal-to-
noise ratio, and the complexity of biomedical image features.
This paper proposes a semi-supervised model called Gradient
Penalty Cross Pseudo Supervision (GP-CPS), which is based
on the Cross Pseudo Supervision (CPS) model and innova-
tively introduces the concept of gradient penalty, significantly
enhancing the model’s performance. To our knowledge, this
is the first time the concept of gradient penalty has been ap-
plied in the field of image segmentation. Furthermore, this
work introduces a new concept of fused cross pseudo supervi-
sion to enhance the diversity of training and strengthen the ro-
bustness of the model. Using the publicly accessible Kvasir-
SEG dataset, proposed model is compared with baselines and
advanced models. In all four partitions containing different
proportions of unlabeled data, proposed model consistently
demonstrates superior performance.

Index Terms— Medical image segmentation, Semi-
supervised learning, Gradient penalty, Pseudo labeling

1. INTRODUCTION

Medical image segmentation is a pivotal technology in the
field of medical image processing, playing a crucial role in
disease diagnosis, treatment planning, surgical navigation,
and therapeutic efficacy assessment [1]. It aids doctors in
understanding pathology for precise treatment. However,
it’s challenging due to small datasets limiting deep learning
model training. High data acquisition costs and privacy con-
cerns hinder large annotated dataset creation, complicating
neural network training.

To overcome this challenge, researchers have explored
various semi-supervised learning techniques to leverage un-
labeled data to enhance the model’s generalization ability.
Mainstream methods fall into two categories: self-training
and consistency regularization. The self-training (also known
as Pseudo labeling) approaches [2, 3] utilize unlabeled im-
ages in a supervised-like manner with one-hot pseudo labels

generated by the up-to-date optimized model itself. Consis-
tency regularization methods [4, 5, 6] improve the generaliz-
ability by enforcing the consistency among the predictions
of unlabeled images with perturbations. Among them, CPC
[7] and CPS [8] are two effective strategies. CPC improves
classification performance by conducting consistency train-
ing on imbalanced datasets, while CPS enhances the model’s
robustness by using the model’s own high-confidence pre-
dictions as additional annotation information through cross-
pseudo labeling. In addition, the CutMix [9] technique gener-
ates pseudo-labeled data by copying and pasting segments of
unlabeled data in images, further expanding the training set.

In Generative Adversarial Networks (GANs) [10], gradi-
ent penalty technology is widely used to improve the stability
of model training and the quality of generation. It enhances
the model’s generalization ability by penalizing the difference
between the model’s output and the real data distribution. The
gradient penalty strategy has been proven to be highly effec-
tive, yet it has not been applied to the field of image segmen-
tation to date.

In this study, we propose an innovative neural network
architecture called GP-CPS, which ingeniously integrates
the cross pseudo labeling strategy of CPS and the gradient
penalty mechanism. Unlike the improvement of WGAN
[11] by GP-WGAN [12], our goal is not to optimize the
consistency between the network output and the real data
distribution, but to focus on reducing the interference of the
background part on the target part by limiting the size of the
relevant gradients. This innovative gradient penalty method
effectively enhances the model’s segmentation performance.
In order to enhance the effectiveness of the gradient penalty,
we introduced the fused cross pseudo labeling, drawing in-
spiration from CutMix. Such labels can amplify the influence
of background pixels on the target pixels, thereby intensify-
ing the effect of the gradient penalty. Proposed model has
been rigorously evaluated against both baselines and state-
of-the-art models using the Kvasir-SEG dataset [13]. The
results demonstrate that GP-CPS outperforms its counter-
parts, thereby underscoring its exceptional performance.



Fig. 1. Overview of the proposed model. Labeled images, unlabeled images, and fused images are all simultaneously input
into two neural networks. The labeled images are supervised by the labels, while the pseudo-labels for the fused images are
generated by fusing the outputs of the neural networks with the true labels.

2. METHOD

Define the medical image as m ∈ R3×w×h, where w and h
represent the width and height of the image, respectively. Our
goal is to predict the label map ŷ ∈ {0, 1}w×h through semi-
supervised learning methods to distinguish the background
and target areas in the image. The output of the neural net-
work is p ∈ [0, 1]w×h, consisting of w × h numbers between
0 and 1.

The dataset is divided into labeled data and unlabeled
data, denoted by l and u, respectively. For any labeled image
l, and any unlabeled image u, they can be fused into a fused
image f through a weighted average, that is

f = εl + (1− ε)u (1)

where ε ∼ Uniform(0, 1).
Proposed model architecture consists of three main parts:

the supervised learning part, the gradient penalty part, and the
semi-supervised learning part. The comprehensive structure
of the model is shown in Figure 1.

2.1. Gradient Penalty

To theoretically elucidate the rationale behind the gradi-
ent penalty trategy, we first consider a medical image m ∈
R3×w×h and an ideal neural network N . The ideal neural
network N can perfectly distinguish between the background

and the target areas in images, that is:

N (x) =

{
0, pixel x ∈ background
1, pixel x ∈ target

(2)

Let
{
N (1),N (2), · · · ,N (n), · · ·

}
be a sequence of neural

networks converging to N, then we have:

lim
n→∞

N (n) = N (3)

From the image m, we randomly select a pixel xB that
belongs to the background, and a random pixel xR that is not
adjacent to xB . By inputting the image m into the neural
network N , we obtain the output p = N (m) ∈ [0, 1]w×h.
The neural network segmentation results corresponding to the
pixels xB and xR are denoted as pB = N (xB) ∈ [0, 1] and
pR = N (xR) ∈ [0, 1], respectively.

Since N is an ideal network, it can perfectly identify that
xB belongs to the background, expressed as:

lim
n→∞

N (n)(xB) = N (xB) = pB = 0 (4)

Let δ(n) be a lower-order infinitesimal of N (n)(xB), such
that:

N (n)(xB) = o(δ(n)) → 0 (5)

When a perturbation δ(n) is added to the background pixel
xB , the ideal network N should still classify the perturbed
pixel x′

B as background, meaning the output of N (n)(xB +
δ(n)) remains an equivalent infinitesimal of N (n)(xB):

N (n)(xB + δ(n)) ∼ N (n)(xB) = o(δ(n)) → 0 (6)



Fig. 2. Gradient Penalty Design in the GP-CPS Model. The
fused image f is input into two neural networks, the sum of all
elements of the outputs is calculated to obtain S, followed by
backpropagation, and finally, the gradient of S with respect to
f is constrained.

Since δ(n) is a lower-order infinitesimal compared to both
N (n)(xB) and N (n)(xB + δ(n)), we have:

∂pB
∂xB

= lim
δ→0

N (xB + δ)−N (xB)

δ

= lim
n→∞

N (n)(xB + δ(n))−N (n)(xB)

δ(n)

= 0

(7)

Since B and xR are non-adjacent pixels, the infinitesimal per-
turbation at the position of xB will not affect the value at xR.
Thus:

∂pR
∂xB

= 0 (8)

From Eq. (7) and Eq. (8), it follows that, for the ideal
network N , the output gradient with respect to xB should
be zero. To bring the trained neural network closer to this
ideal state, we should constrain the network’s output gradient
concerning the background pixels to approach zero. This pro-
cess is visually represented in Figure 2. Through the gradient
penalty strategy, we can effectively guide the network to learn
more stable feature representations.

To implement the gradient penalty, the fused data f is
input into neural networks N1 and N2, yielding outputs
N1(f),N2(f) ∈ [0, 1]w×h. The sum of all elements of
N1(f) and N2(f) is calculated to obtain the sum of the
neural network outputs S:

S =
∑

a∈N1(f)

a+
∑

b∈N2(f)

b (9)

As previously mentioned, the ideal gradient for S with
respect to the background pixels should be zero. By back-
propagating S, the gradient G of S with respect to the fused
image f is obtained:

G =
∂S

∂f
=

∂
(∑

a∈N1(f)
a+

∑
b∈N2(f)

b
)

∂f
(10)

Here, the gradient at pixel x is denoted as G(x). Define
the set B as the collection of all background pixels in the
fused image f :

B = {x|y(x) = 0 or N (x) < 0.5} (11)

Finally, the gradient penalty loss function Lgrad is obtained
by constraining the absolute value of the gradients for all pix-
els in the set B:

Lgrad = meanx∈B (|G(x)|) (12)

2.2. Fused Cross Pseudo Supervision

To more effectively utilize unlabeled data u, we introduce the
concept of fused cross pseudo supervision in proposed model
design. The labeled data l and unlabeled data u are averaged
with weights to obtain the fused data f . This f is then input
into neural networks N1 and N2, which produce outputs p1
and p2, respectively. Referring to the generation method of
the fused data f , fused cross pseudo labels y1 and y2 for f are
generated from the label y and the neural network outputs p1
and p2 as follows:

y1 = εy + (1− ε)p2 (13)

y2 = εy + (1− ε)p1 (14)

where ε is the same as in Eq. (1).
By supervising the fused outputs with the fused pseudo la-

bels, we define the fusion cross-semi-supervised loss function
Lsemi:

Lsemi = Ldice(N1(f), y1) + Ldice(N2(f), y2) (15)

2.3. Loss Function

In the supervised learning component, we input labeled im-
ages l into two neural networks N1 and N2, obtaining the im-
age segmentation results N1(l) and N2(l). Subsequently, we
calculate the Dice coefficient using the labels y and the seg-
mentation results, thereby obtaining the supervised loss func-
tion

Lsup = Ldice(N1(l), y) + Ldice(N2(l), y) (16)

This method is simple and effective, providing a solid learn-
ing foundation for the model.

The comprehensive training scheme for the neural net-
work depends on three main loss functions: the supervised
loss Lsup, the gradient penalty loss Lgrad, and the fusion
pseudo-supervision loss Lsemi. The total loss function is
shown as follows:

Loss = Lsup + λ1Lgrad + λ2Lsemi (17)



3. EXPERIMENTS

3.1. Dataset

This study uses the Kvasir-SEG dataset, which was published
in the 2020 MediaEval competition. The dataset contains
1000 images of gastrointestinal polyps. These images were
annotated and verified by senior gastrointestinal experts.
They also come with segmentation masks. To conduct model
training, validation, and testing, we divided these images into
three parts: 800 for training, 100 for validation, and 100 for
testing. Following the division criteria of the CPC [8] model,
we randomly partitioned the training set into two subsets.
One subset includes half, one-fourth, one-eighth, and one-
sixteenth of the training set with labels, forming the labeled
group. The other subset contains the remaining unlabeled
training data, which we defined as the unlabeled group.

3.2. implementation Details

In this study, we developed and executed our proposed algo-
rithm using the PyTorch framework on a personal computer
equipped with an NVIDIA RTX 3090 GPU. The model archi-
tecture was constructed using two Unet backbone networks,
which were initialized with distinct random seeds to foster di-
versity in the training process. For model optimization, this
work employed the Adam optimizer, with a batch size of 16,
a learning rate set to 1 × 10−4, the momentum parameters
β1 and β2 set to 0.9 and 0.999, and the numerical stability
parameter epsilon (eps) set to 1× 10−8.

In the design of the model’s loss function, we specifi-
cally set two trade-off parameters λ1 and λ2, with values of
1 × 10−3 and 1, to balance the importance of different loss
terms. To evaluate the performance of the model, we adopted
the Dice coefficient as metrics. The training was rigorously
conducted over 100 epochs.

Table 1. Comparison of the proposed model with the baseline
models and state-of-the-art models.

Methods 1/2(400) 1/4(200) 1/8(100) 1/16(50)

Unet 78.56 75.63 65.87 61.24

CPC [7] 78.90 76.85 66.92 62.15

CPS [8] 79.14 75.82 66.95 62.27

PSMT [14] 81.54 80.15 68.21 64.07

ST++ [15] 81.19 79.45 71.72 66.58

Ours 83.30 81.30 76.64 72.13

3.3. Comparative Experiment

The CPC [7] and CPS [8] models are used as baselines for
evaluation purposes. During the assessment phase, the same

backbone network is used for training and testing both the
baseline models and the models we designed. Additionally,
Table 1 also shows a comparison of our model’s Dice coeffi-
cient with two other state-of-the-art networks.

As shown in Table 1, among all the dataset partitions, our
algorithm provided the best Dice coefficient. Compared to the
baselines CPC and CPS, our model achieved nearly a 10% im-
provement at the 1/16 partition and a nearly 5% improvement
at the 1/2 partition.

3.4. Ablation Experiment

In this study, we conducted ablation experiments to investi-
gate the impact of fused cross semi supervised learning and
gradient penalty strategies on model performance. The re-
sults, as demonstrated in Table 2, indicate that the introduc-
tion of our fusion semi-supervised learning strategy and gra-
dient penalty mechanism significantly enhanced the model’s
Dice coefficient. This observation confirms the rationality of
all modules in this research and substantiates that the fusion
semi-supervised module indeed augments the efficacy of the
gradient penalty module.

Table 2. Ablation study evaluation in Dice values of different
added components, conducted on 1/8 partition.

Methods Lsup Lgrad Lsemi Dice

I ✓ 65.87

II ✓ ✓ 73.05

III ✓ ✓ 66.71

Ours ✓ ✓ ✓ 76.64

4. CONCLUSION

This study successfully developed an innovative semi super-
vised neural network model, GP-CPS, specifically designed
for medical image segmentation tasks. The model inge-
niously integrates three aspects: supervised learning, gradient
penalty , and fused cross pseudo labeling. Notably, we in-
troduce the concept of gradient penalty to the field of image
segmentation for the first time, and through mathematical
proof and experimental validation, fully demonstrate the
significant potential of this strategy in enhancing image seg-
mentation performance. In addition, we introduced a fused
cross pseudo labeling mechanism, which not only further
enhances the effect of gradient penalty but also significantly
improves the quality and accuracy of pseudo labels. Through
the synergistic effect of these multi-strategies, the GP-CPS
model has shown outstanding performance in medical image
segmentation tasks, providing new ideas and methods for
future research and applications.
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